Indian Statistical Institute, Bangalore B. Math II, First Semester, 2022-23 Mid-semester Examination, Introduction to Statistical Inference 21.09.22 Maximum Score 60 Duration: 3 Hours

- 1. (12+8) Let X_1, \dots, X_n be iid observations from a beta $(\theta, 1)$ distribution.
 - (a) Find the MLE of θ . Use this to find the MLE, T, of $1/\theta$. Is T unbiased for $1/\theta$? Does T attain the Cramer Rao lower bound?
 - (b) Find $q(\theta) = E(X_1)$. Does \bar{X} attain the Cramer Rao lower bound as an unbiased estimator for $q(\theta)$?
- 2. (10) Suppose X_1, X_2, \dots, X_n are independent random variables such that

$$P(X_i = 1) = p_i = 1 - P(X_i = 0),$$

where $p_1, p_2, \dots, p_n \in (0, 1)$ are all distinct and unknown. Consider $X = \sum_{i=1}^n X_i$ and another random variable Y which is distributed as Binomial (n, \bar{p}) , where $\bar{p} = \frac{1}{n} \sum_{i=1}^n p_i$. Between X and Y, which is a better estimator of $\sum_{i=1}^n p_i$ in terms of their respective mean squared errors?

- 3. (10) Suppose $\delta(X)$ is a Bayes estimator of parameter $g(\theta)$ under prior π . Suppose $\delta(X)$ is also unbiased for $g(\theta)$.
 - (a) Show, by conditioning on X, that $E(\delta(X)g(\theta)) = E(\delta^2(X))$.
 - (b) Show, by conditioning on θ , that $E(\delta(X)g(\theta)) = E(g^2(\theta))$.
 - (c) Conclude that $E(\delta(X) g(\theta))^2 = 0.$
 - (d) If X_1, \dots, X_n are iid $\mathcal{N}(\mu, 1)$, then use the above result to conclude that \bar{X} cannot be a Bayes estimator for μ under any prior.
 - (e) What can you conclude about unbiased Bayes estimators?
- 4. (5+10+5)
 - (a) Let $f(x;\theta)$ be the pdf or pmf of the sample X and T(x) is a sufficient statistic. Show that for every two sample points x and y, T(x) = T(y) implies that the ratio $f(x;\theta)/f(y;\theta)$ is constant as a function of θ .
 - (b) Suppose we have a sufficient statistic T(x) such that for every two sample points x and y, the ratio $f(x;\theta)/f(y;\theta)$ is constant as a function of θ implies T(x) = T(y). Show that T(x) is minimal sufficient.
 - (c) Let X_1, \dots, X_n be iid observations from a normal distribution with mean μ and variance σ^2 . Show that (\bar{x}, s^2) is a sufficient statistic for (μ, σ^2) . Use the above result to show that it is minimal sufficient.